首页 加入收藏 联系我们

客服热线:0755-89482646

0755-36917666

公司传真:0755-89482579

销售客服

技术交流

等离子处理机的清洁有效范围

发布时间:2023/8/10 8:06:35 | 信息来源:
收藏本文章 | 复制本页链接 | 打印本页 | 浏览:130 次 | 点此浏览更多 《技术交流》 | 【关闭窗口
糊盒等离子处理机材料的功能:


1.材料表面达因值增大、使表面附着力增大。


2.开胶的克星,去除油污,清除灰尘。


3.可用于清洗活化各种表面如玻璃、LED显示屏,橡胶,硅胶等大部分有机物质等。


4.破坏分子化学键、起到改性的作用。


5汽车行业;汽车玻璃上,汽车工业车灯罩、刹车片、车门密封胶条的粘贴前的处理;机械行业金属零部件的细微无害清洁处理,镜片镀涂前的处理。


.印刷包装糊盒机械中对封边位置的上胶前的处理。因为汽车玻璃上要涂增水剂:所以


必须用我们机子处理后才能达到效果,可使水滴角变小,使被处理物体亲水性增大,可使 汽车玻璃雨天模糊程度变小,更有利于开车。


6.手机屏幕表面处理、处理手机屏幕玻璃,如电子产品中,LCD屏的涂覆处理、机壳及按键钮等结构件的表面喷油丝印、PCB表面的除胶除污清洁、镜片胶水粘贴前的处理等、使其增大表面张力、增大达因值降低水滴角。


7.医疗器械:增大亲水性、杀菌、消毒、增大达因值等功效。


8.喷码机:喷码不清晰或者喷不上码;可用等离子处理机处理被喷码物体的表面,使其被喷码物体表面张力增大,活化物体表面,使喷码更加牢固,


9.等离子处理机处理刹车片以增大达因值及表面张力,使其更容易达到处理效果。


等离子设备相比传统设备的优势在于以下几个方面:


1.清洁有效
等离子体能量密度大,反应速度快,可以有效清除污染物,如空气中的细菌、病毒、甲醛、苯等有害物质,水中的金属离子、难降解有机物等,不会留下二次污染物。此外,等离子体还可以分解有机废气,在化工行业、食品加工厂、油漆涂料产品等领域中具有广泛的应用。


2.一体化设计
现代等离子设备通常采用一体化设计,可以将发电、制氢、催化裂化、氧化脱硫、高温处理等过程集成在一起,并且可以实现自动化、智能化控制和在线监测,大大提高了生产效率和安全性。


3.节能环保
等离子技术是一种清洁的、低碳的新型能源技术,与传统燃烧技术相比,其反应速率快,能量转换率高,在产生能量时几乎不会产生任何污染物,是一种非常环保的能源选择,在未来能源结构的优化中具有重要地位。


4.多功能性
等离子设备可以广泛应用于各个领域。例如,它可以用于核聚变能源领域,是未来人类解决能源危机有希望的一种方案;还可以用于太阳能热发电和光伏技术上,可以又很好的解决太阳能用电中的技术难题;在医学领域,等离子体可以成为治疗肿瘤和其他疾病的重要手段;同时,等离子体还可以用于激光熔凝、表面改性、新材料开发等方面。等离子粘接影响设备强度的物理因素


1.表面粗糙度:


    当胶粘剂良好地浸润被粘材料表面时(接触角θ<90°),表面的粗糙化有利于提高胶粘剂液体对表面的浸润程度,增加胶粘剂与被粘材料的接触点密度,从而有利于提高粘接强度。反之,当胶粘剂对被粘材料浸润不良时(θ>90°),表面的粗糙化就不利于粘接强度的提高。


2.表面处理:


    粘接前的表面处理是粘接成功的关键,其目的是能获得牢固耐久的接头。由于被粘材料存在氧化层(如锈蚀)、镀铬层、磷化层、脱模剂等形成的“弱边界层”,被粘物的表面处理将影响粘接强度。例如,聚乙烯表面可用热铬酸氧化处理而改善粘接强度,加热到70-80时处理1-5分钟,就会得到良好的可粘接表面,这种方法适用于聚乙烯板、厚壁管等。而聚乙烯薄膜用铬酸处理时,只能在常温下进行。如在上述温度下进行,则薄膜的表面处理,采用等离子或微火焰处理。


对天然橡胶、丁苯橡胶、丁腈橡胶和氯丁橡胶表面用浓硫酸处理时,希望橡胶表面轻度氧化,故在涂酸后较短的时间,就要将硫酸彻底洗掉。过度的氧化反而在橡胶表面留下更多的脆弱结构,不利于粘接。


    对硫化橡胶表面局部粘接时,表面处理除去脱膜剂,不宜采用大量溶剂洗涤,以免不脱膜剂扩散到处理面上妨碍粘接。


铝及铝合金的表面处理,希望铝表面生成氧化铝结晶,而自然氧化的铝表面是十分不规则的、相当疏松的氧化铝层,不利于粘接。所以,需要除去自然氧化铝层。但过度的氧化会在粘接接头中留下薄弱层。


3.渗透:


    已粘接的接头,受环境气氛的作用,常常被渗进一些其他低分子。例如,接头在潮湿环境或水下,水分子渗透入胶层;聚合物胶层在有机溶剂中,溶剂分子渗透入聚合物中。低分子的透入首先使胶层变形,然后进入胶层与被粘物界面。使胶层强度降低,从而导致粘接的破坏。


    渗透不仅从胶层边沿开始,对于多孔性被粘物,低分子物还可以从被粘物的空隙、毛细管或裂缝中渗透到被粘物中,进而侵入到界面上,使接头出现缺陷乃至破坏。渗透不仅会导致接头的物理性能下降,而且由于低分子物的渗透使界面发生化学变化,生成不利于粘接的锈蚀区,使粘接完全失效。


4.迁移:


    含有增塑剂被粘材料,由于这些小分子物与聚合物大分子的相容性较差,容易从聚合物表层或界面上迁移出来。迁移出的小分子若聚集在界面上就会妨碍胶粘剂与被粘材料的粘接,造成粘接失效。


5.压力:


    在粘接时,向粘接面施以压力,使胶粘剂更容易充满被粘体表面上的坑洞,甚至流入深孔和毛细管中,减少粘接缺陷。对于粘度较小的胶粘剂,加压时会过度地流淌,造成缺胶。因此,应待粘度较大时再施加压力,也促使被粘体表面上的气体逸出,减少粘接区的气孔。


    对于较稠的或固体的胶粘剂,在粘接时施加压力是必不可少的手段。在这种情况下,常常需要适当地升高温度,以降低胶粘剂的稠度或使胶粘剂液化。例如,绝缘层压板的制造、飞机旋翼的成型都是在加热加压下进行。


为了获得较高的粘接强度,对不同的胶粘剂应考虑施以不同的压力。一般对固体或高粘度的胶粘剂施高的压力,而对低粘度的胶粘剂施低的压力。


6.胶层厚度:


    较厚的胶层易产生气泡、缺陷和早期断裂,因此应使胶层尽可能薄一些,以获得较高的粘接强度。另外,厚胶层在受热后的热膨胀在界面区所造成的热应力也较大,更容易引起接头破坏。


7.负荷应力:


    在实际的接头上作用的应力是复杂的,包括剪切应力、剥离应力和交变应力。


   (1) 切应力:由于偏心的张力作用,在粘接端头出现应力集中,除剪切力外,还存在着与界面方向一致的拉伸力和与界面方向垂直的撕裂力。此时,接头在剪切应力作用下,被粘物的厚度越大,接头的强度则越大。


   (2) 剥离应力:被粘物为软质材料时,将发生剥离应力的作用。这时,在界面上有拉伸应力和剪切应力作用,力集中于胶粘剂与被粘物的粘接界面上,因此接头很容易破坏。由于剥离应力的破坏性很大,在设计时尽量避免采用会产生剥离应力的接头方式。

上一篇:等离子处理纺织物的视觉效果及美观度
下一篇:等离子处理设备的清洗作用