等离子粘接影响设备强度的物理因素
1.表面粗糙度:
当胶粘剂良好地浸润被粘材料表面时(接触角θ<90°),表面的粗糙化有利于提高胶粘剂液体对表面的浸润程度,增加胶粘剂与被粘材料的接触点密度,从而有利于提高粘接强度。反之,当胶粘剂对被粘材料浸润不良时(θ>90°),表面的粗糙化就不利于粘接强度的提高。
2.表面处理:
粘接前的表面处理是粘接成功的关键,其目的是能获得牢固耐久的接头。由于被粘材料存在氧化层(如锈蚀)、镀铬层、磷化层、脱模剂等形成的“弱边界层”,被粘物的表面处理将影响粘接强度。例如,聚乙烯表面可用热铬酸氧化处理而改善粘接强度,加热到70-80时处理1-5分钟,就会得到良好的可粘接表面,这种方法适用于聚乙烯板、厚壁管等。而聚乙烯薄膜用铬酸处理时,只能在常温下进行。如在上述温度下进行,则薄膜的表面处理,采用等离子或微火焰处理。
对天然橡胶、丁苯橡胶、丁腈橡胶和氯丁橡胶表面用浓硫酸处理时,希望橡胶表面轻度氧化,故在涂酸后较短的时间,就要将硫酸彻底洗掉。过度的氧化反而在橡胶表面留下更多的脆弱结构,不利于粘接。
对硫化橡胶表面局部粘接时,表面处理除去脱膜剂,不宜采用大量溶剂洗涤,以免不脱膜剂扩散到处理面上妨碍粘接。
铝及铝合金的表面处理,希望铝表面生成氧化铝结晶,而自然氧化的铝表面是十分不规则的、相当疏松的氧化铝层,不利于粘接。所以,需要除去自然氧化铝层。但过度的氧化会在粘接接头中留下薄弱层。
3.渗透:
已粘接的接头,受环境气氛的作用,常常被渗进一些其他低分子。例如,接头在潮湿环境或水下,水分子渗透入胶层;聚合物胶层在有机溶剂中,溶剂分子渗透入聚合物中。低分子的透入首先使胶层变形,然后进入胶层与被粘物界面。使胶层强度降低,从而导致粘接的破坏。
渗透不仅从胶层边沿开始,对于多孔性被粘物,低分子物还可以从被粘物的空隙、毛细管或裂缝中渗透到被粘物中,进而侵入到界面上,使接头出现缺陷乃至破坏。渗透不仅会导致接头的物理性能下降,而且由于低分子物的渗透使界面发生化学变化,生成不利于粘接的锈蚀区,使粘接完全失效。
4.迁移:
含有增塑剂被粘材料,由于这些小分子物与聚合物大分子的相容性较差,容易从聚合物表层或界面上迁移出来。迁移出的小分子若聚集在界面上就会妨碍胶粘剂与被粘材料的粘接,造成粘接失效。
5.压力:
在粘接时,向粘接面施以压力,使胶粘剂更容易充满被粘体表面上的坑洞,甚至流入深孔和毛细管中,减少粘接缺陷。对于粘度较小的胶粘剂,加压时会过度地流淌,造成缺胶。因此,应待粘度较大时再施加压力,也促使被粘体表面上的气体逸出,减少粘接区的气孔。
对于较稠的或固体的胶粘剂,在粘接时施加压力是必不可少的手段。在这种情况下,常常需要适当地升高温度,以降低胶粘剂的稠度或使胶粘剂液化。例如,绝缘层压板的制造、飞机旋翼的成型都是在加热加压下进行。
为了获得较高的粘接强度,对不同的胶粘剂应考虑施以不同的压力。一般对固体或高粘度的胶粘剂施高的压力,而对低粘度的胶粘剂施低的压力。
6.胶层厚度:
较厚的胶层易产生气泡、缺陷和早期断裂,因此应使胶层尽可能薄一些,以获得较高的粘接强度。另外,厚胶层在受热后的热膨胀在界面区所造成的热应力也较大,更容易引起接头破坏。
7.负荷应力:
在实际的接头上作用的应力是复杂的,包括剪切应力、剥离应力和交变应力。
(1) 切应力:由于偏心的张力作用,在粘接端头出现应力集中,除剪切力外,还存在着与界面方向一致的拉伸力和与界面方向垂直的撕裂力。此时,接头在剪切应力作用下,被粘物的厚度越大,接头的强度则越大。
(2) 剥离应力:被粘物为软质材料时,将发生剥离应力的作用。这时,在界面上有拉伸应力和剪切应力作用,力集中于胶粘剂与被粘物的粘接界面上,因此接头很容易破坏。由于剥离应力的破坏性很大,在设计时尽量避免采用会产生剥离应力的接头方式。等离子处理设备是一种高技术的设备,能够在微观尺度上进行清洗和表面改性。其原理是借助于等离子体反应生成活性气体,并使这些气体与待处理物表面发生碰撞作用,从而实现对物体表面的清洗和改性。以下将详细介绍等离子处理设备的原理。
一、等离子状态
等离子状态是常见物质状态之一,类似于固态、液态、气态以及波动态。等离子体是由气体或者液体中的分子或原子组成的高温、高能带电粒子集合体,其特点之一是其具有自激励性质,即在一定情况下,它们能够释放出足够的能量来促使更多原子或分子进入等离子态。
二、等离子处理设备的基本原理
等离子处理设备利用等离子变化能够产生的大量质子、氧离子、氮离子、硅离子等带异性质的粒子,并加速这些粒子,将它们引导到待处理物表面,这些粒子与物体表面的原子或者分子碰撞后,会释放出巨大的能量,这个过程称为离子表面交互反应过程。这些反应产生的碰撞粒子的能量所激发物体表面分子的原子层具有不同的效应,如化学反应、物理反应和结构变化等。
三、等离子处理设备的操作过程
等离子处理设备由等离子发生器、等离子喷雾装置、真空泵系统和控制系统等部分组成。其工作流程包括以下几个步骤:
1.真空抽除:将待处理物置于等离子处理室中,开启泵系统,将气体排出,形成真空环境。
2.等离子振荡:通过高频电源产生感应电场,将气体激励起来,从而产生等离子体。
3.等离子扩散:等离子体向外扩散,与待处理物接触并发生离子表面交互反应,从而实现对物体的清洗和改性。
4.进料:对待处理的物体进行进料,并使其暴露在等离子体前缘处。
5.等离子处理:对待处理的物体进行等离子表面交互反应,从而实现清洗和改性的目的。
6.结束处理:当处理完成后,要将气体排出,并关闭设备。
四、等离子处理设备的应用
等离子处理设备已广泛应用于各种领域。在电子行业中,它被用于微电子制造和集成电路清洗;在医疗行业中,它被用于杀菌和消毒;在化学工艺中,它被用于表面喷涂和材料改性;在环保治理中,它被用于废水处理和气态污染物处理。其利用等离子技术,既能达到有效、环保的处理效果,又不会对待处理物体造成损伤,成为一种非常有前途的清洗和改性的方法。
综上所述,等离子处理设备通过产生等离子体反应生成活性气体,实现对物体表面的清洗和改性。该技术已经得到广泛应用,在电子、医疗、化学、环保等领域都有着重要的作用。当今,等离子处理技术被广泛应用于材料表面处理和改性方面。 它通常使用在气体相反应室中产生的高温、高能量电离气体等离子体来处理物质表面。 等离子体是一种由高能离子、原子和自由基组成的高度活跃的气态。
等离子体产生的方式有许多种,包括电弧放电、RF放电、微波放电、脉冲放电等。不同类型的等离子发生器会影响到等离子锅炉的工作效率和特征,这也是一个非常重要的问题。
而将等离子体应用于材料表面处理上,则可以通过等离子体的高能量作用于物质表面来改变其化学和物理性质,即所谓的等离子处理。等离子处理可以使物料表面结构发生改变,进而提高其化学惰性、耐磨性、耐腐蚀性和界面附着性等性能。
等离子处理的机理主要来自于等离子体对表面的化学性质和结构具有显著的影响。 高能量等离子体中存在大量自由基、激发态原子和离子,这些活性物质能够与材料表面上的化学成分进行反应,并导致表层物质发生化学变化。
例如,氧离子在等离子处理中可以被用来氧化表面,从而使表面生成一定厚度的金属氧化物。 与此同时,离子轰击和沉积可以导致表层物质生长、缩短撞击而导致失踪, 钝化表面原子并提高界面深度和耐久性。 等离子处理还可激活材料表面,促进其吸附和润湿性能。
值得注意的是,等离子处理后多久有效受到许多因素的影响,包括表面材料的种类和形状、等离子体处理参数和条件、环境湿度、温度等。在实践中, 大多数等离子处理数据都是通过定期测试表面性能的总体变化来确定其有效时间。
近年来,随着等离子处理技术的不断发展和完善,已经发展出了许多新型的等离子发生器和处理方法,如等离子共聚变(ICP)和微波气体放电等离子体等。 这些新技术的应用,为以后改进、提高等离子处理效果和表面材料性能提供了重要方法。
总之,等离子处理是一种主要通过改变物料表面结构、形态和化学组成来增强其性能的表面工艺方法。 实际运用中,等离子处理的有效时间受到多个因素的影响。 等离子技术的进步也将不断完善等离子处理技术,并推动其更广泛的应用。